Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 24(12): e14149, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37738654

RESUMO

To investigate the effect of using non-uniform loading and notched plaques on dose distribution for eye plaques. Using EGSnrc Monte Carlo (MC) simulations, we investigate eye plaque dose distributions in water and in an anatomically representative eye phantom. Simulations were performed in accordance with TG43 formalism and compared against full MC simulations which account for inter-seed and inhomogeneity effects. For standard plaque configurations, uniformly and non-uniformly loaded plaque dose distributions in water showed virtually no difference between each other. For standard plaque, the MC calculated dose distribution in planes parallel to the plaque is narrower than the TG43 calculation due to attenuation at the periphery of the plaque by the modulay. MC calculated the dose behind the plaque is fully attenuated. Similar results were found for the notched plaque, with asymmetric attenuation along the plane of the notch. Cumulative dose volume histograms showed significant reductions in the calculated MC doses for both tumor and eye structures, compared to TG43 calculations. The effect was most pronounced for the notch plaque where the MC dose to the optic nerve was greatly attenuated by the modulay surrounding the optic nerve compared to the TG43. Thus, a reduction of optic nerve D95% from 14 to 0.2 Gy was observed, when comparing the TG43 calculation to the MC result. The tumor D95% reduced from 89.2 to 79.95 Gy for TG43 and MC calculations, respectively. TG43 calculations overestimate the absolute dose and the lateral dose distribution of both standard and notched eye plaques, leading to the dose overestimation for the target and organs at risk. The dose matching along the central axis for the non-uniformly loaded plaques to that of uniformly loaded ones was found to be sufficient for providing comparable coverage and can be clinically used in eye-cancer-busy centers.


Assuntos
Braquiterapia , Neoplasias Oculares , Humanos , Radiometria/métodos , Braquiterapia/métodos , Neoplasias Oculares/radioterapia , Método de Monte Carlo , Água , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
2.
Med Phys ; 50(3): 1928-1941, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36542404

RESUMO

PURPOSE: To update and extend version 2 of the Carleton Laboratory for Radiotherapy Physics (CLRP) TG-43 dosimetry database (CLRP_TG43v2) for high-energy (HE, ≥50 keV) brachytherapy sources (1 169 Yb, 23 192 Ir, 5 137 Cs, and 4 60 Co) using egs_brachy, an open-source EGSnrc application. A comprehensive dataset of TG-43 parameters is compiled, including detailed source descriptions, dose-rate constants, radial dose functions, 1D and 2D anisotropy functions, along-away dose-rate tables, Primary and Scatter Separated (PSS) dose tables, and mean photon energies escaping each source. The database also documents the source models which are freely distributed with egs_brachy. ACQUISITION AND VALIDATION METHODS: Datasets are calculated after a recoding of the source geometries using the egs++ geometry package and its egs_brachy extensions. Air kerma per history is calculated in a 10 × 10 × $\,{\times}\, 10\,{\times}\,$ 0.05 cm3 voxel located 100 cm from the source along the transverse axis and then corrected for the lateral and thickness dimensions of the scoring voxel to give the air kerma on the central axis at a point 100 cm from the source's mid-point. Full-scatter water phantoms with varying voxel resolutions in cylindrical coordinates are used for dose calculations. Most data (except for 60 Co) are based on the assumption of charged particle equilibrium and ignore the potentially large effects of electron transport very close to the source and dose from initial beta particles. These effects are evaluated for four representative sources. For validation, data are compared to those from CLRP_TG43v1 and published data. DATA FORMAT AND ACCESS: Data are available at https://physics.carleton.ca/clrp/egs_brachy/seed_database_v2 or http://doi.org/10.22215/clrp/tg43v2 including in Excel (.xlsx) spreadsheets, and are presented graphically in comparisons to previously published data for each source. POTENTIAL APPLICATIONS: The CLRP_TG43v2 database has applications in research, dosimetry, and brachytherapy planning. This comprehensive update provides the medical physics community with more precise and in some cases more accurate Monte Carlo (MC) TG-43 dose calculation parameters, as well as fully benchmarked and described source models which are distributed with egs_brachy.


Assuntos
Braquiterapia , Braquiterapia/métodos , Dosagem Radioterapêutica , Radiometria/métodos , Física , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos
3.
Med Phys ; 47(9): 4656-4669, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32436344

RESUMO

PURPOSE: To update the Carleton Laboratory for Radiotherapy Physics (CLRP) TG-43 dosimetry database for low-energy (≤50 keV) photon-emitting low-dose rate (LDR) brachytherapy sources utilizing the open-source EGSnrc application egs_brachy rather than the BrachyDose application used previously for 27 LDR sources in the 2008 CLRP version (CLRPv1). CLRPv2 covers 40 sources ( 103 Pd, 125 I, and 131 Cs). A comprehensive set of TG-43 parameters is calculated, including dose-rate constants, radial dose functions with functional fitting parameters, 1D and 2D anisotropy functions, along-away dose-rate tables, Primary-Scatter separation dose tables (for some sources), and mean photon energies at the surface of the sources. The database also documents the source models which will become part of the egs_brachy distribution. ACQUISITION AND VALIDATION METHODS: Datasets are calculated after a systematic recoding of the source geometries using the egs++ geometry package and its egs_brachy extensions. Air-kerma strength per history is calculated for models of NIST's Wide-Angle Free-Air chamber (WAFAC) and for a point detector located at 10 cm on the source's transverse axis. Full scatter water phantoms with varying voxel resolutions in cylindrical coordinates are used for dose calculations. New statistical uncertainties of source volume corrections for phantom voxels which overlap with brachytherapy sources are implemented in egs_brachy, and all CLRPv2 data include these uncertainties. For validation, data are compared to CLRPv1 and other data in the literature. DATA FORMAT AND ACCESS: Data are available at https://physics.carleton.ca/clrp/egs_brachy/seed_database_v2, http://doi.org/10.22215/clrp/tg43v2. As well as being presented graphically in comparisons to previous calculations, data are available in Excel (.xlsx) spreadsheets for each source. POTENTIAL APPLICATIONS: The database has applications in research, dosimetry, and brachytherapy treatment planning. This comprehensive update provides the medical physics community with more accurate TG-43 dose evaluation parameters, as well as fully benchmarked and described source models which are distributed with egs_brachy.


Assuntos
Braquiterapia , Laboratórios , Método de Monte Carlo , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
4.
Med Phys ; 47(8): 3402-3414, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32339300

RESUMO

PURPOSE: Motion compensated positron emission tomography (PET) imaging requires detecting and monitoring of patient body motion. We developed a semiautomatic list-mode method to track the three-dimensional (3D) motion of fiducial positron-emitting markers during PET imaging. METHODS: A previously developed motion tracking method using positron-emitting markers (PeTrack) was enhanced to work with PET imaging. A novel combination of filtering methods was developed to reject physiological tracer background, which would drown out the events from the marker if unfiltered. The most critical filter rejects events whose line-of-response (LOR) is outside an adaptive region of interest (ADROI). The size of ROI was optimized by exploiting the distinct differences between the distributions of events from background and marker. The ADROI PeTrack method was evaluated with Monte Carlo and phantom studies. A 92.5-kBq 22 Na marker moving sinusoidally in 3D was simulated with Monte Carlo methods. The simulated events were combined with list-mode data from cardiac PET imaging patients to evaluate the performance of the tracking. In phantom studies, three 22 Na markers were placed on a dynamic torso phantom with an initial activity of 680 MBq of 82 Rb in its cardiac insert. The motion of the markers was tracked while the phantom simulated various types of patient motion. Motion correction on an event-by-event basis of the list-mode data was then applied and images were reconstructed. RESULTS: Simulation results show that the background rejection methods can significantly suppress the tracer background and increase the fraction of marker events by a factor of up to 2500. A 92.5-kBq marker can be tracked in 3D at a frequency of 2.0 Hz with an accuracy of 0.8 mm and a precision of 0.3 mm. The phantom study experimentally confirms that the algorithm can track various types of motion. The relative accuracy of the experimental tracking is 0.26 ± 0.14 mm. Motion-corrected images from the phantom study show reduced blurring. CONCLUSIONS: An algorithm and background rejection methods were developed that can track the 3D motion of low-activity positron-emitting markers during PET imaging. The motion information may be used for motion-compensated PET imaging.


Assuntos
Marcadores Fiduciais , Tomografia Computadorizada por Raios X , Algoritmos , Humanos , Movimento (Física) , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons
5.
J Contemp Brachytherapy ; 11(6): 563-572, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31969915

RESUMO

PURPOSE: The study compared the experimentally measured radial dose function, g(r), and anisotropy function, F(r,θ), of a BEBIG 60Co (Co0.A86) high-dose-rate (HDR) source in an in-house designed water phantom with egs_brachy Monte Carlo (MC) calculated values. MC results available in the literature were only for unbounded phantoms, and there are no currently published data in the literature for experimental data compared to MC calculations for a bounded phantom. MATERIAL AND METHODS: egs_brachy is a fast EGSnrc application designed for brachytherapy applications. For unbounded phantom calculation, we considered a cylindrical phantom with a length and diameter of 80 cm and used liquid water. These egs_brachy calculated TG43U1 parameters were compared with the consensus data. Upon its validation, we experimentally measured g(r) and F(r,θ) in a precisely machined 30 × 30 × 30 cm3 water phantom using TLD-100 and EBT2 Gafchromic Film and compared it with the egs_brachy results of the same geometry. RESULTS: The TG43U1 dosimetric dataset calculated using egs_brachy was compared with published data for an unbounded phantom, and found to be in good agreement within 2%. From our experimental results of g(r) and F(r,θ), the observed variation with the egs_brachy code calculation is found to be within the acceptable experimental uncertainties of 3%. CONCLUSIONS: In this study, we validated the egs_brachy calculation of the TG43U1 dataset for the BEBIG 60Co source for an unbounded geometry. Subsequently, we measured the g(r) and F(r,θ) for the same source using an in-house water phantom. In addition, we validated these experimental results with the values calculated using the egs_brachy MC code, with the same geometry and similar phantom material as used in the experimental methods.

6.
Phys Med Biol ; 63(3): 038002, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29192606

RESUMO

We respond to the comments by Dr Yegin by identifying the source of an error in a fit in our original paper but arguing that the lack of a fit does not affect the conclusion based on the raw data that [Formula: see text] is an accurate code and we provide further benchmarking data to demonstrate this point.


Assuntos
Braquiterapia , Método de Monte Carlo , Benchmarking
7.
Med Phys ; 44(11): 5961-5976, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28722180

RESUMO

PURPOSE: A joint working group was created by the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy and Oncology (ESTRO), and the Australasian Brachytherapy Group (ABG) with the charge, among others, to develop a set of well-defined test case plans and perform calculations and comparisons with model-based dose calculation algorithms (MBDCAs). Its main goal is to facilitate a smooth transition from the AAPM Task Group No. 43 (TG-43) dose calculation formalism, widely being used in clinical practice for brachytherapy, to the one proposed by Task Group No. 186 (TG-186) for MBDCAs. To do so, in this work a hypothetical, generic high-dose rate (HDR) 192 Ir shielded applicator has been designed and benchmarked. METHODS: A generic HDR 192 Ir shielded applicator was designed based on three commercially available gynecological applicators as well as a virtual cubic water phantom that can be imported into any DICOM-RT compatible treatment planning system (TPS). The absorbed dose distribution around the applicator with the TG-186 192 Ir source located at one dwell position at its center was computed using two commercial TPSs incorporating MBDCAs (Oncentra® Brachy with Advanced Collapsed-cone Engine, ACE™, and BrachyVision ACUROS™) and state-of-the-art Monte Carlo (MC) codes, including ALGEBRA, BrachyDose, egs_brachy, Geant4, MCNP6, and Penelope2008. TPS-based volumetric dose distributions for the previously reported "source centered in water" and "source displaced" test cases, and the new "source centered in applicator" test case, were analyzed here using the MCNP6 dose distribution as a reference. Volumetric dose comparisons of TPS results against results for the other MC codes were also performed. Distributions of local and global dose difference ratios are reported. RESULTS: The local dose differences among MC codes are comparable to the statistical uncertainties of the reference datasets for the "source centered in water" and "source displaced" test cases and for the clinically relevant part of the unshielded volume in the "source centered in applicator" case. Larger local differences appear in the shielded volume or at large distances. Considering clinically relevant regions, global dose differences are smaller than the local ones. The most disadvantageous case for the MBDCAs is the one including the shielded applicator. In this case, ACUROS agrees with MC within [-4.2%, +4.2%] for the majority of voxels (95%) while presenting dose differences within [-0.12%, +0.12%] of the dose at a clinically relevant reference point. For ACE, 95% of the total volume presents differences with respect to MC in the range [-1.7%, +0.4%] of the dose at the reference point. CONCLUSIONS: The combination of the generic source and generic shielded applicator, together with the previously developed test cases and reference datasets (available in the Brachytherapy Source Registry), lay a solid foundation in supporting uniform commissioning procedures and direct comparisons among treatment planning systems for HDR 192 Ir brachytherapy.


Assuntos
Algoritmos , Braquiterapia/métodos , Radioisótopos de Irídio/uso terapêutico , Método de Monte Carlo , Doses de Radiação , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
8.
Phys Med Biol ; 61(23): 8214-8231, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27804922

RESUMO

egs_brachy is a versatile and fast Monte Carlo (MC) code for brachytherapy applications. It is based on the EGSnrc code system, enabling simulation of photons and electrons. Complex geometries are modelled using the EGSnrc C++ class library and egs_brachy includes a library of geometry models for many brachytherapy sources, in addition to eye plaques and applicators. Several simulation efficiency enhancing features are implemented in the code. egs_brachy is benchmarked by comparing TG-43 source parameters of three source models to previously published values. 3D dose distributions calculated with egs_brachy are also compared to ones obtained with the BrachyDose code. Well-defined simulations are used to characterize the effectiveness of many efficiency improving techniques, both as an indication of the usefulness of each technique and to find optimal strategies. Efficiencies and calculation times are characterized through single source simulations and simulations of idealized and typical treatments using various efficiency improving techniques. In general, egs_brachy shows agreement within uncertainties with previously published TG-43 source parameter values. 3D dose distributions from egs_brachy and BrachyDose agree at the sub-percent level. Efficiencies vary with radionuclide and source type, number of sources, phantom media, and voxel size. The combined effects of efficiency-improving techniques in egs_brachy lead to short calculation times: simulations approximating prostate and breast permanent implant (both with (2 mm)3 voxels) and eye plaque (with (1 mm)3 voxels) treatments take between 13 and 39 s, on a single 2.5 GHz Intel Xeon E5-2680 v3 processor core, to achieve 2% average statistical uncertainty on doses within the PTV. egs_brachy will be released as free and open source software to the research community.


Assuntos
Braquiterapia/métodos , Método de Monte Carlo , Imagens de Fantasmas , Próteses e Implantes , Monitoramento de Radiação/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Neoplasias da Mama/radioterapia , Neoplasias Oculares/radioterapia , Feminino , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Monitoramento de Radiação/normas , Dosagem Radioterapêutica , Software
9.
Med Phys ; 43(2): 783-95, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26843241

RESUMO

PURPOSE: Respiratory motion can lead to treatment errors in the delivery of radiotherapy treatments. Respiratory gating can assist in better conforming the beam delivery to the target volume. We present a study of the technical aspects of a real time positron emission tracking system for potential use in gated radiotherapy. METHODS: The tracking system, called PeTrack, uses implanted positron emission markers and position sensitive gamma ray detectors to track breathing motion in real time. PeTrack uses an expectation-maximization algorithm to track the motion of fiducial markers. A normalized least mean squares adaptive filter predicts the location of the markers a short time ahead to account for system response latency. The precision and data collection efficiency of a prototype PeTrack system were measured under conditions simulating gated radiotherapy. The lung insert of a thorax phantom was translated in the inferior-superior direction with regular sinusoidal motion and simulated patient breathing motion (maximum amplitude of motion ±10 mm, period 4 s). The system tracked the motion of a (22)Na fiducial marker (0.34 MBq) embedded in the lung insert every 0.2 s. The position of the was marker was predicted 0.2 s ahead. For sinusoidal motion, the equation used to model the motion was fitted to the data. The precision of the tracking was estimated as the standard deviation of the residuals. Software was also developed to communicate with a Linac and toggle beam delivery. In a separate experiment involving a Linac, 500 monitor units of radiation were delivered to the phantom with a 3 × 3 cm photon beam and with 6 and 10 MV accelerating potential. Radiochromic films were inserted in the phantom to measure spatial dose distribution. In this experiment, the period of motion was set to 60 s to account for beam turn-on latency. The beam was turned off when the marker moved outside of a 5-mm gating window. RESULTS: The precision of the tracking in the IS direction was 0.53 mm for a sinusoidally moving target, with an average count rate ∼250 cps. The average prediction error was 1.1 ± 0.6 mm when the marker moved according to irregular patient breathing motion. Across all beam deliveries during the radiochromic film measurements, the average prediction error was 0.8 ± 0.5 mm. The maximum error was 2.5 mm and the 95th percentile error was 1.5 mm. Clear improvement of the dose distribution was observed between gated and nongated deliveries. The full-width at halfmaximum of the dose profiles of gated deliveries differed by 3 mm or less than the static reference dose distribution. Monitoring of the beam on/off times showed synchronization with the location of the marker within the latency of the system. CONCLUSIONS: PeTrack can track the motion of internal fiducial positron emission markers with submillimeter precision. The system can be used to gate the delivery of a Linac beam based on the position of a moving fiducial marker. This highlights the potential of the system for use in respiratory-gated radiotherapy.


Assuntos
Neoplasias Pulmonares/radioterapia , Radioterapia Assistida por Computador/métodos , Respiração , Algoritmos , Humanos , Neoplasias Pulmonares/fisiopatologia , Movimento , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica , Radioterapia Assistida por Computador/instrumentação , Software
10.
Med Phys ; 38(2): 810-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21452718

RESUMO

PURPOSE: Tumor motion due to patient breathing is a factor that limits the accuracy of dose distribution in radiotherapy. One of the methods to improve the accuracy is by applying respiratory gating or tumor tracking. Both techniques require a precise determination of the spatial location of the tumor. We present an experimental evaluation of the performance of PeTrack, a technique that can track internal fiducial markers in real-time for tumor tracking. METHODS: PeTrack uses position sensitive detectors to record annihilation coincidence gamma rays from fiducial positron emission markers implanted in or around the tumor. It uses an expectation-maximization clustering algorithm to track the position of the markers. A normalized least mean square adaptive filter was used to predict the position of the markers 100 and 200 ms in the future. We evaluated the performance of the tracking and of the prediction by using a dynamic anthropomorphic thorax phantom to generate three-dimensional (3D) motion of three fiducial markers. The algorithm was run with four different data sets. In the first run, the motion of the markers was based on a sinusoidal model of respiratory motion. Three additional runs were done with motion based on patient breathing data. RESULTS: In the case of the sinusoidal model, the average 3D root mean square error for all markers was 0.44 mm. For the three runs based on patient breathing data, the precision of the 3D localization was 0.49 mm. At a latency of 100 ms, the average 3D prediction error was 1.3 +/- 0.6 mm for the sinusoidal model and for the three patient breathing runs. At a latency of 200 ms, the average 3D prediction errors were 1.7 +/- 0.8 mm for the sinusoidal model and 1.4 +/- 0.7 mm for the breathing runs. CONCLUSIONS: We conclude that PeTrack can track multiple fiducial markers in real-time with an accuracy and precision smaller than 2 mm. PeTrack can have a direct application in tumor tracking for radiation therapy.


Assuntos
Elétrons , Marcadores Fiduciais , Movimento , Tomografia por Emissão de Pósitrons/normas , Raios gama , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/fisiopatologia , Respiração , Fatores de Tempo
11.
Med Phys ; 36(5): 1576-86, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19544773

RESUMO

The effectiveness of radiotherapy in cancer treatment remains significantly limited by the accuracy of tumor dose delivery. The ideal solution lies in real-time localization of patient tumors during therapy; one such method is by tracking implanted low-activity positron emitters using two pairs of orthogonally placed gamma-ray detectors. Prior studies have examined multiple point sources, which have potential patient complications during implantation. A linear source geometry is proposed as a less invasive alternative, with potential higher-precision tracking. A source localization algorithm has been devised using cost-function minimization of the source position estimate relative to annihilation gamma coincidence lines. The algorithm was tested via Monte Carlo simulation methods using a Geant4 application for emission tomography (GATE) package for a source of length of 2.00 cm and width of 0.1 mm. The midpoint of the linear marker was located within submillimeter accuracy at 200 coincidence events and the orientation of the source determined with less than 5 degrees (0.087 rad) angular deviation at 300 events. At an optimal event count of 700, tracking had mean midpoint error of 0.48 +/- 0.26 mm and mean angular deviation of 0.041 +/- 0.023 rad (1.4 degrees +/- 0.8 degree). The source and tracking algorithm may prove effective for future clinical implementation in radiotherapy treatment.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Reconhecimento Automatizado de Padrão/métodos , Tomografia por Emissão de Pósitrons/métodos , Radioterapia Assistida por Computador/métodos , Inteligência Artificial , Simulação por Computador , Sistemas Computacionais , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Modelos Lineares , Modelos Biológicos , Movimento , Tomografia por Emissão de Pósitrons/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...